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Abstract

A three-degrees of freedom semi-definite torsional system representing an automotive driveline is studied
in presence of a torque converter clutch that manifests itself as a dry friction path. An analytical procedure
based on the linear system theory is proposed first to establish the stick-to-slip boundaries. Smoothened
and discontinuous Coulomb friction formulations are then applied to the nonlinear system, and the
differential governing equations are numerically solved given harmonic torque excitation and a mean load.
Time domain histories illustrating dry friction-induced stick–slip motions are predicted for different
saturation torques and system parameters. Approximate analytical solutions based on distinct states are
also developed and successfully compared with numerical studies. Analysis shows that the conditioning
factor associated with the smoothened friction model (hyperbolic tangent) must be carefully selected. Then
nonlinear frequency responses are constructed from cyclic time histories and the stick–slip boundaries
predictions (as yielded by the linear system theory) are confirmed. In particular, the effect of secondary
inertia is analytically and numerically investigated. Results show that the secondary inertia has a significant
influence on the dynamic response. A quasi-discontinuous oscillation is found with the conventional bi-
linear friction model in which the secondary inertia is ignored. Finally, our methods are successfully
compared with two benchmark analytical and experimental studies, as available in the literature on two-
degrees of freedom translational systems.
r 2005 Elsevier Ltd. All rights reserved.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

C torsional viscous damping coefficient
(Nm s/rad)

f dimensionless force
F force (N)
I torsional inertia ðkgm2Þ

K torsional stiffness ðNm=radÞ
k dimensionless stiffness
m dimensionless mass
P period (s)
p dimensionless stiffness
r dimensionless mass
t time (s)
T torque (Nm)
V relative velocity
G test function (Nm)
D small quantity
d relative angular displacement (radian)
z viscous damping ratio
y absolute angular displacement (rad)
m friction coefficient
x normalized absolute displacement
r dimensionless friction force amplitude
s conditioning factor
t integration time (s)
f phase (rad)
c phase lag (rad)
O angular speed (rad/s)
o excitation frequency (rad/s)
Im test function ðrad=sÞ2

Re decision function (Nm)
y normalized absolute displacement
j phase lag (rad)

Subscripts

1; 2; 3 inertial element indices

c critical or transition
D drag load
e engine or equivalent
eq equivalent
f friction
k kinetic
m mean
n natural frequency
max maximum
min minimum
p fluctuating component or perturbation
s static
sf saturation

Superscripts

. first derivative with respect to time

.. second derivative with respect to time

Operators

j j absolute value
h it time-average operator
intð Þ integer portion

Abbreviations

dof degrees of freedom
sdof single-degree of freedom system
2dof/3dof two/three-degrees of freedom system
max maximum value
min minimum value
rms root-mean-square
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1. Introduction

Dry friction elements are commonly found in many mechanical and structural systems. For
example, consider the automotive torque converter clutch (TCC) sub-system that consists of a
fluid torque converter and in parallel a mechanical dry friction clutch as shown in Fig. 1. When
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Fig. 1. Schematic of a typical automotive torque converter and dry friction clutch (TCC).
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the engine speed Oe is low, the dry friction clutch is fully disengaged and only the fluid torque
converter path is operational. The pump drives the turbine with a torque generated by a change in
the momentum of the fluid. Torque amplification is allowed and a smooth shift or transition is
allowed [1]. At a higher speed, the mechanical clutch is fully engaged and the fluid path is no
longer in effect. Under this condition, the transmission is directly driven by the engine. The energy
dissipated within the torque converter is minimized to enhance the fuel efficiency. Over the mid-
speed range, the TCC is partially engaged and both the dry friction clutch and the fluid torque
converter transmit torque [2,3]. The TCC is designed to transmit very high torque loads and to
suppress a large slip between engine and transmission to avoid overheating. However, the
stick–slip phenomenon often takes place within the TCC as a consequence of significant torque
pulsations from the engine. The resulting stick–slip could excite several vibration problems in the
driveline system, thereby reducing the vehicle ride quality. To study the dynamic effects of
stick–slip within a driveline system with TCC, we will study the nonlinear dynamic characteristics
of a three-degrees of freedom (3dof) semi-definite torsional system with a dry friction controlled
path.
2. Literature review and research issues

2.1. Typical dry friction models

Several dry friction formulations have been proposed based on the classical (discontinuous)
Coulomb model that is illustrated in Fig. 2a. For instance, Karnopp [4] developed a stick–slip
friction law in which the friction force or torque Tf is defined as a function of the relative velocity
_d. A small region of velocity �D_d is defined as the stick stage in Fig. 2b. Beyond this, the friction
interface is considered to be in the slip stage. Following Iwan’s bi-linear hysteresis formulation [5],
Menq et al. [6] proposed a modified micro-slip model by modeling the friction interface in terms of
an elasto-plastic shear layer. Three different states are defined in Fig. 2c: purely elastic, partial slip
and total slip. When the relative displacement reaches a certain value dc, the deformation between
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Fig. 2. Selected dry friction formulations: (a) classical (discontinuous) Coulomb model; (b) Karnopp model [4];

(c) Menq et al.’s models [6]: - - - - - -, elastic bar on rigid base; ——, elastic bar with an elastoplastic shear layer on a

rigid base; (d) model by Imamura et al. [7]; (e) smoothened friction formulation Tf ð
_dÞ of our study with a variable

conditioning factor s and with saturation torque T sf ¼ 350Nm: Key for (e): – - – - –, s ¼ 50; ——, s ¼ 102; – - – - – - –,

s ¼ 103; ——, s ¼ 104.
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interfaces becomes plastic and the gross slip takes place. Consequently, the friction force reaches a
saturation value T sf . This model could further consider unloading and reloading cases, in which
the material memory effect is taken into account. Imamura et al. [7] developed a new friction
torque model as shown in Fig. 2d with an application to automotive clutch system. Unlike the
bi-linear hysteresis model in which dc is defined at the kinetic transition point, a critical velocity _dc

is defined here. The friction torque varies linearly with _d within the critical bounds �_dc. Finally,
other models can be derived from the aforementioned formulations by selecting the static friction
coefficient ms or kinetic friction coefficient mk, or by assuming a specific mkð

_dÞ relation.

2.2. Solution methods

Several analytical or computational methods have been applied to solve the dry friction
problems. Den Hartog [8] initiated research in this area by analytically solving the forced
vibration problem of a single-degree of freedom (sdof) system with Coulomb friction. He
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determined an equivalent viscous damping value under pure slipping case and then found the time
history with a limit of no more than 2 stops. With the assumption of periodic and aperiodic
motions, Pratt and Williams [9] extended Den Hartog’s work and calculated the system response
with multi-lockups by using a shooting method. Also, they calculated the equivalent viscous
damping on a time-averaged basis. Shaw [10] extended the previous work by including different
static ms and kinetic mk coefficients; he also conducted bifurcation and stability analyses. Menq et
al. [11,12] and Wang et al. [13,14] used a multi-term harmonic balance method to find the dynamic
response of a bi-linear hysteresis problem. Ferri and Heck [15] and Ferri [16] solved a two-degrees
of freedom (2dof) system by using a modified singular perturbation method. In their method, the
system order is reduced to eliminate the numerical stiffness problem. Van De Vrande et al. [17]
solved a dry friction-induced stick–slip problem by smoothening the discontinuous dry friction
force with an arc-tangent function and then studied the autonomous systems from the phase plane
viewpoint. Leine et al. [18] proposed an alternate friction model using a concept similar to
Karnopp’s formulation. Berger et al. [19] proposed a mixed differential–algebraic equation
approach that uses differential equations to describe the slipping dynamics and algebraic
equations to model the interfacial sticking. In their method, a zeroth-order optimization
algorithm is proposed to detect the transition from stick to slip.
2.3. Some unresolved problems

Many investigators have focused on sdof systems with application to the dry friction damper.
In such systems, the friction force is relatively small compared to the excitation force amplitude
and the dry friction damper is used mainly to absorb or dampen forced vibration [8–16,20].
Further, much research has focused on the description of friction interfacial regimes [4–6].
Nonetheless, dry friction elements invariably exist in many real-life mechanical systems and rather
than dissipating energy, the dry friction path acts as a key energy transmitting element. For
instance, the friction capacity of the dry friction clutch (TCC) could be as high as 450Nm, which
is comparable to the peak value of the dynamic torque generated by the engine [7]. In this case,
TCC cannot be considered as a purely frictional vibration damper. Instead, the friction torque
from TCC becomes a dominant excitation to the subsequent torsional driveline sub-system
(downstream of TCC) consisting of gearbox, propeller shaft, differential, axle and wheels.
Consequently, the dynamics of the driveline system is significantly determined by the
localized stick–slip motions within TCC. However, the scientific literature on this effect
of dry friction on system dynamics is very limited. For example, some researchers have focused on
a bi-linear hysteresis problem by assuming a massless link between the spring and Coulomb
friction elements [5,6,11–14]. However, that is not always true for some physical systems since a
small secondary lumped inertial element could exist. Effect of such a secondary inertia on the
system dynamics is still not well understood though Ferri and Heck [15] briefly mentioned the
significance on a secondary mass in the context of a dry friction damper. Recently, Berger and
Krousgrill [20] examined the role of a secondary mass in dissipating energy and evaluated its
influence on the kinetic state of the damper. They found that the non-zero secondary mass
damper would substantially attenuate the resonant response when compared with a massless
bi-linear system.
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3. Problem formulation

3.1. Torsional system with dry friction controlled path

The driveline system can be reasonably represented by a 3dof semi-definite system with focus on
the TCC sub-system. This is conceptually similar to the manual transmission formulation
employed by Padmanabhan and Singh [21] to study gear rattle and to the automatic transmission
model utilized by Yamada and Ando [22] to examine clutch judder. As shown in Fig. 3, I1
represents the combined torsional inertia of flywheel, front cover and impeller, I2 is the inertia of
friction shoe assembly and I3 is the reflected torsional inertia of the rest of the driveline system.
The governing equations for this 3dof semi-definite system with a nonlinear dry friction path as
given by Tf are

I1 €y1 þ Cð_y1Þð_y1 � _y3Þ þ Tf ðd1; _d1Þ ¼ TeðtÞ, (1)

I2 €y2 þ Kðy2 � y3Þ � Tf ðd1; _d1Þ ¼ 0, (2)

I3 €y3 � Cð_y1Þð_y1 � _y3Þ � Kðy2 � y3Þ ¼ �TDðtÞ, (3)

where y1; y2 and y3 are absolute angular displacements, Cð_y1Þ is the engine speed-dependent
viscous damping term which represents the fluid path, K is the linear torsional stiffness, TeðtÞ is
the engine torque (including mean and dynamic terms) and TDðtÞ is the drag load as experienced
by the driveline. Further, in Eq. (1), Tf ðd1; _d1Þ is a function of the relative displacement d1 ¼
y1 � y2 and relative velocity _d1 ¼ _y1 � _y2 across the dry friction interface. When the relative
motions are of interest, the system can be further reduced to the following 2dof definite system,
where d2 ¼ y2 � y3 and _d2 ¼ _y2 � _y3:

I2 €d1 þ Cð_y1Þ
I2

I1
ð_d1 þ _d2Þ � Kd2 þ

I1 þ I2

I1
Tf ðd1; _d1Þ ¼

I2

I1
TeðtÞ, (4)
θ1 θ2 θ3

I1 I2 
I3 

Te(t) = Tm + Tp(t)
C( 1θ ) 

TD 

Tf(δ ) K 

Fig. 3. Physical example: 3dof semi-definite torsional model of an automotive driveline system. Here, Tf ð_dÞ represents
a dry friction path.
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Table 1

Values of parameter and excitation amplitude used for simulating the system of Fig. 3

Parameters and excitation Value(s)

Torsional inertias ðkgm2Þ I1 ¼ 0:20, I2 ¼ 0:02, I3 ¼ 6:6

Torsional viscous damping ðNmrad=sÞ C ¼ 1:0
Torsional stiffness ðNm=radÞ K ¼ 1010

Saturation friction torque (Nm) T sf ¼ 350

Torque excitation amplitude (Nm) Tm ¼ 100, Tp ¼ 250
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I2 €d2 þ Cð_y1Þ
I2

I3
ð_d1 þ _d2Þ þ

I2 þ I3

I3
Kd2 � Tf ðd1; _d1Þ ¼

I2

I3
TDðtÞ. (5)

Table 1 lists typical values of parameters and excitation used for simulation studies.

3.2. Scope, assumptions and objectives

The engine torque TeðtÞ is composed of mean Tm ¼ hTeit and pulsating TpðtÞ components,
where h it is the time-averaged operator. Using the Fourier series expansion, express it as

TeðtÞ ¼ Tm þ
X

n

Tpn cosðopntþ fpnÞ,

where n is the harmonic order of the firing sequence, opn ¼ ðNe=2ÞnOe, Ne is the number of engine
cylinders [23,24], Tpn is the amplitude for the nth harmonic and fn is the associated phase lag. In
this article, only the fundamental term ðn ¼ 1Þ is considered for the sake of simplicity and the
phase angle is assumed to be zero. The drag load TDðtÞ consists of wheel rolling resistance and
aerodynamic drag. It is further assumed that the vehicle speed is constant and the vehicle drag and
the mean engine load are balanced, Tm ¼ TD.
Even when the TCC is partially engaged, most of the torque is transmitted by the mechanical

path [3]. Thus, the driveline system dynamics is assumed to be mostly affected by the mechanical
stick–slip motions. In this case, the fluid path term Cð_y1Þ is further approximated by a linear
viscous damping C. In a real system, C could be around 1:0Nms=rad [1]. Further, under a high
normal load, the shear stiffness of the friction interface is assumed to be very large. Consequently,
the discontinuous Coulomb model is used and ms ¼ mk is assumed. The normal force on the
friction interface remains unchanged and the friction torque Tf capacity is fixed accordingly.
Given a nonlinear dry friction problem, time domain integration methods are usually employed

[4,8,9,18]. However, the solution process consumes significant time and yet the resulting time
history at a certain frequency (under a given mean load) does not provide an overall
characterization of the nonlinear system from the design standpoint. Further, actual time
histories may not be important for some engineering applications. Consequently, steady-state
frequency response characteristics must be constructed to provide better and easy-to-follow
dynamic design guidelines [25]. This article will accordingly also examine the nonlinear frequency
response of the driveline system since it is rarely discussed in the dry friction literature [21,25].
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Finally, for any nonlinear system, super or sub-harmonic responses, multi-valued equilibrium
points, quasi-periodic or chaotic responses may be present. However, such nonlinear issues will be
addressed in a future article.
The chief objective of this study is to investigate the nonlinear dynamics of the 3dof system

representing the torsional driveline system subject to the localized stick–slip motions of the dry
friction path. In particular, the effect of the secondary inertia ðI2Þ that represents the friction shoe
assembly here is studied and compared with the conventional bi-linear system. Two solution
methods, namely the smoothened friction model and discontinuous Coulomb model, are
employed. The effect of the conditioning factor s (as defined later) on system dynamics will be
studied. Approximate analytical solutions, based on assumed states (such as pure stick, positive or
negative slip) will also be developed and compared with computational solutions. Time histories
are presented to assist the frequency domain analyses. The stick-to-slip boundaries will be first
determined based on the linear system theory and then examined using the nonlinear models. The
effect of the friction torque amplitude (a path parameter) is of particular interest. Further, the
effect of secondary inertia will be carefully examined using both numerical and approximate
analytical solutions. Finally, our models are applied to two benchmark analytical and
experimental studies [15,26] for the sake of validation.
4. Computation of stick-to-slip boundaries based on linear system models

In the case of a high friction torque T sf , a closer observation would find that the friction
interface is under purely the stick condition over some frequencies. A simple linear system analysis
is conducted to find this frequency regime. The schematic of a system under the pure stick
condition is shown in Fig. 4a. In this case, I1 and I2 move together as a single rigid body and the
3dof semi-definite system is reduced to a 2dof semi-definite system with equations as

ðI1 þ I2Þ€y1 þ Cð_y1 � _y3Þ þ Kðy1 � y3Þ ¼ Te, (6)

I3 €y3 � Cð_y1 � _y3Þ � Kðy1 � y3Þ ¼ �TD. (7)

Reducing this linear system further into sdof definite system, the governing equation is given as
follows where the sinusoidal excitation (at o with amplitude T eq) under a mean load Tm is
applied:

I eq €dþ C _dþ Kd ¼ Tm þ T eq sinðotÞ, (8)

where d ¼ y1 � y3 ¼ y2 � y3, Ieq ¼ I3ðI1 þ I2Þ=ðI1 þ I2 þ I3Þ and Teq ¼ TpI3=ðI1 þ I2 þ I3Þ.
The analytical solution for the steady-state oscillatory motions (d and _d) is as follows, where
c ¼ tan�1½Co=ðK � I eqo2Þ� is the phase lag.

dðtÞ ¼
Tm

K
þ

T eqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK � I eqo2Þ

2
þ ðCoÞ2

q sinðot� cÞ, (9)
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Fig. 4. Resulting torsional systems under different conditions: (a) pure stick condition; (b) free body diagram for I1
under pure stick conditions and (c) positive slip condition.
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_dðtÞ ¼
T eqoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðK � I eqo2Þ
2
þ ðCoÞ2

q cosðot� cÞ. (10)

As seen from the free body diagram of Fig. 4b, the following relationship holds under the pure
stick condition:

TeðtÞ � I1 €y1ðtÞ � C _dðtÞ ¼ Tf ðtÞ. (11)

Then the transition condition from stick to slip is

jTeðtÞ � I1 €y1ðtÞ � C _dðtÞj4T sf . (12)

From Eq. (6), substitute €y1ðtÞ ¼ ½TeðtÞ � C _dðtÞ � KdðtÞ�=ðI1 þ I2Þ into Eq. (12) to find the
breakaway condition as

I2

I1 þ I2
TeðtÞ �

I2

I1 þ I2
C _dðtÞ þ

I1

I1 þ I2
KdðtÞ

����
����4T sf . (13)

As evident from this analysis, the stick-to-slip boundary is determined by system parameters that
are summarized in Table 1. As shown in Fig. 5a, the upper threshold frequency drops as the
secondary inertia I2 is increased. A pure stick regime is found at the lower-frequency range.
Depending on the friction saturation torque, the pure stick regime exists at lower frequencies as
shown in Fig. 5b. The excitation amplitude yields an opposite trend in Fig. 5c where the pure stick
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Fig. 5. Stick–slip boundaries based on linear system analysis: (a) variation with respect to I2; (b) variation with respect

to T sf and (c) variation with respect to excitation amplitude of Tp.
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regime occurs at a lower excitation torque. This analysis can also be applied to other physical
systems where a dry friction element is present. The stick–slip transition could be quickly located
and the entire simulation process would become more time efficient.
5. Analytical and numerical solutions to nonlinear path formulation

5.1. Smoothened friction torque model

The classical Coulomb model is Tf ð
_dÞ a non-smooth function since it is discontinuous with

respect to _d and a singularity exists at _d ¼ 0. For this reason, the direct numerical integration
scheme cannot be applied. To overcome this difficulty, a smoothening procedure could be used to
condition the abrupt transitions. Ways to smoothen a discontinuous function using arc-tangent,
hyperbolic tangent, hyperbolic-cosine or quintic spline functions have been proposed by Kim



ARTICLE IN PRESS

C. Duan, R. Singh / Journal of Sound and Vibration 289 (2006) 657–688 667
et al. [27] with an application to the clearance nonlinearity. In their study, the hyperbolic tangent
and arc-tangent function were preferred because of their applicability to both direct time domain
integration and semi-analytical (such as the multi-term harmonic balance) methods. The
smoothened friction model can be described by a continuous but still a strongly nonlinear
function, as shown below, in terms of the hyperbolic tangent function. The resulting nonlinear
friction torque is given by

Tf ¼ T sf tanhðs_d1Þ, (14)

where T sf is the saturation torque (torque at the kinetic state) and s is the conditioning factor that
control the abruptness of the transition as illustrated in Fig. 2e. The higher the value of s is, the
more abrupt the transition is. An extremely high value of s would yield a profile that would
resemble the classical Coulomb model. Further, the smoothened friction model of Eq. (14) yields
a unique Tf corresponding to a certain value of _d1. Thus the friction torque would be viewed as an
‘‘active torque’’ with _d1. The smoothening procedure is used mainly to facilitate the direct
numerical integration scheme as Tf becomes a smooth function of _d1 over the entire vector space.
When the smoothened friction model is used, the nonlinear friction torque becomes an explicit

nonlinear function of _d. Using Eqs. (4)–(5), the governing equations can be rewritten as

I2 €d1 þ C
I2

I1
ð_d1 þ _d2Þ � Kd2 þ

I1 þ I2

I1
T sf tanhðs_d1Þ ¼

I2

I1
TeðtÞ ¼

I2

I1
ðTm þ Tp sinotÞ, (15)

I2 €d2 þ C
I2

I3
ð_d1 þ _d2Þ þ

I2 þ I3

I3
Kd2 � T sf tanhðs_d1Þ ¼

I2

I3
TD. (16)

Since there is no spring in parallel with the dry friction element, d1 does not appear in the system
equations. An explicit Runge–Kutta method of order 5(4) with a step size control due to
Dormand and Prince [28] can be applied directly to this system to find the resulting response.

5.2. Analytical solution for the positive slip state

Unlike the smoothened friction model, the discontinuous friction torque, as given below, treats
Tf as a ‘‘passive torque’’ that is determined by external excitation and system response. Here, Tf

can assume any value between �T sf and T sf at _d1 ¼ 0:

Tf ¼

T sf ; _d140;

½�T sf T sf �; _d1 ¼ 0;

�T sf ; _d1o0:

8><
>: (17)

Thus the friction torque behaves in a piecewise linear manner. Three different dynamic states
(positive slip, negative slip and pure stick) are defined depending on the frictional interfacial
condition. In each state, an effective linear model is considered. First, examine the positive slip
state, _d1 ¼ _y1 � _y240. The friction torque is constant and equal to T sf as shown in Fig. 4c. The
governing equations for this state are

I2 €d1 þ C
I2

I1
ð_d1 þ _d2Þ � Kd2 þ

I1 þ I2

I1
T sf ¼

I2

I1
TeðtÞ, (18)
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I2 €d2 þ C
I2

I3
ð_d1 þ _d2Þ þ

I2 þ I3

I3
Kd2 � T sf ¼

I2

I3
TD. (19)

As seen from Table 1, I3bI2 for a typical automotive driveline system. For this reason, Eq. (19)
can be approximated by discarding the viscous damping torque associated with _d1. Further, one
could decouple _d1 and d2 by dropping the appropriate terms in Eqs. (18) and (19). However, we
must keep the CðI2=I1Þ_d2 term since the viscous damping is needed to avoid the unbound solution
due to resonance. Simplify Eq. (19) to yield the following:

I2 €d2 þ C
I2

I3
_d2 þ

I2 þ I3

I3
Kd2 � T sf ¼

I2

I3
TD. (20)

The solution for d2ðtÞ is first obtained where b ¼ I2=I3 and tc is the transition time from the pure
stick to the positive slip.

d2ðtÞ ¼
bTD þ T sf

ð1þ bÞK
þ e�lðt�tcÞfp1 cosðodðt� tcÞÞ þ p2 sinðodðt� tcÞÞg, (21a)

l ¼
�Cb
2I2

; od ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4I2ð1þ bÞK � C2b2

q
2I2

. (21b,c)

Assuming the initial values

d2jt¼tc
¼ L2; _d2jt¼tc

¼ V2. (22a,b)

The coefficients p1 and p2 are found as shown below.

p1 ¼ L2 �
bTD þ T sf

ð1þ bÞK
; p2 ¼

V2 þ lP1

od

. (23a,b)

Rewrite Eq. (18) in the following form where a ¼ I2=I1,

I2 €d1 þ Ca_d1 ¼ aTeðtÞ � Ca_d2 þ Kd2 � ð1þ aÞT sf . (24)

Note that the right-hand side of Eq. (24) can be viewed as an equivalent excitation to a first-order
linear system with a time constant I2=Ca ¼ 1=x. We obtain the solution for _d1ðtÞ in the following
torque functional form:

_d1ðtÞ ¼ A0 þ A1e
�xðt�tcÞ þ

A21 cosðoðt� tcÞÞ

þA22 sinðoðt� tcÞÞ

( )
þ

A31 cosðod ðt� tcÞÞ

þA32 sinðodðt� tcÞÞ

( )
þ A4ðt� tcÞ. (25)

The coefficients (A0;A1;A21;A22;A31;A32 and A4) can be obtained by satisfying the initial
conditions d1jt¼tc

¼ L1 and _d1jt¼tc
¼ 0. Although the exact expressions for the coefficients are not

displayed here, Eq. (25) shows the oscillations occur with o and od in addition to a bias term ðA0Þ,
an exponentially decaying term, and a linear ramp.

5.3. Analytical solution for the negative slip state

Next, the equations for the negative slip state in which _d1 ¼ _y1 � _y2o0 and Tf ¼ �T sf are
given as follows. In Fig. 4c, the direction of T sf must be reversed to illustrate this case.
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I2 €d1 þ C
I2

I1
ð_d1 þ _d2Þ � Kd2 �

I1 þ I2

I1
T sf ¼

I2

I1
TeðtÞ, (26)

I2 €d2 þ C
I2

I3
ð_d1 þ _d2Þ þ

I2 þ I3

I3
Kd2 þ T sf ¼

I2

I3
TD. (27)

The analytical solutions for this state can be obtained in a manner similar to those reported for the
positive slip state in Section 5.2.

5.4. Analytical solution for the pure stick state

Finally, consider the pure stick condition. Now, I1 and I2 move as a single inertial body and the
3dof system is essentially reduced to a 2dof semi-definite system or a sdof definite system as shown
in Fig. 4a. The governing equation is given by Eq. (8) as defined in Section 4. In this state, _d1 ¼ 0
and d1 remains constant and equal to the one from the end of previous state. The solution for d2ðtÞ
can be obtained by solving Eq. (8) as follows where g ¼ C=2I eq. Assuming that the transition time
from the positive or negative slip to the pure stick state is td , we again express it in a functional
form where B11 and B12 are coefficients that are determined by the initial conditions. Like
Eq. (25), observe a bias term (Tm=K) and an exponentially decaying term. But oscillations occur
only with frequency o.

d2ðtÞ ¼ e�gðt�td Þ
B11 cosðosðt� tdÞÞ

þB12 sinðosðt� tdÞÞ

( )
þ

Tm

K
þ

Teqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK � Ieqo2Þ

2
þ ðCoÞ2

q sinðoðt� tdÞ � cÞ. (28)

5.5. Numerical solution of the discontinuous friction torque model

As presented in the previous sections, each state can be analytically solved and then the entire
solution could be assembled. Alternatively, the equations can be solved by a fifth fourth-order
Runge–Kutta integration algorithm. Test conditions and functions, however, must be defined at
each state. At each integration step, the test function is checked. For instance when system
undergoes positive or negative slip, the test function is defined as ImðtiÞ ¼

_d1ðtiÞ
_d1ðtiþ1Þ, which is

the product of the relative velocities of two successive integration steps. Whenever ImðtiÞ becomes
negative, a possible transition to the stick state is detected and the program automatically finds
the exact transition point within a pre-specified precision. A bi-section root finding algorithm is
used; although this method may not be the most efficient algorithm, yet it is found very reliable by
Gear and Osterby [29]. With a specified tolerance 10�6, our code usually finds the exact point
within 5–10 iterations. A test function for the stick state is defined as GðtÞ, which is actually the
instantaneous interfacial friction torque. From Eq. (15), GðtÞ is given by

GðtÞ ¼
I2

I1 þ I2
TeðtÞ �

I2

I1 þ I2
C _d2ðtÞ þ

I1

I1 þ I2
Kd2ðtÞ. (29)

Whenever jGðtÞj is greater than T sf , a possible transition from stick to slip is detected. Once the
exact transition points are calculated, the subsequent state is determined by a decision function
ReðtÞ that is numerically identical to GðtÞ. The detailed state to state transition process is
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Table 2

State-to-state transition for the nonlinear formulation of Fig. 3 with discontinuous Coulomb friction model

Previous state Transition condition Test function Future state d1 and _d1

Positive slip ImðtÞo0 jReðtÞjpT sf Pure stick d1 ¼ d�1; _d1 ¼ 0

jReðtÞj4T sf Negative slip sgnð_d1ðtþ 0ÞÞ ¼ sgnð f ðt� 0ÞÞ

Pure stick jGðtÞj4T sf ReðtÞ4T sf Positive slip sgnð_d1ðtþ 0ÞÞ ¼ sgnð f ðt� 0ÞÞ

ReðtÞo� T sf Negative slip sgnð_d1ðtþ 0ÞÞ ¼ sgnð f ðt� 0ÞÞ

Negative slip ImðtÞo0 jReðtÞj4T sf Positive slip sgnð_d1ðtþ 0ÞÞ ¼ sgnð f ðt� 0ÞÞ

jReðtÞjpT sf Pure stick d1 ¼ dn1 ; _d1 ¼ 0
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illustrated in Table 2. The sgn function used here is the conventional triple-valued signum
function:

sgnð_d1Þ ¼

1; _d140;

0; _d1 ¼ 0;

�1; _d1o0:

8><
>: (30)

Note that d�1 in Table 2 is the value of d1 at the end of previous positive or negative slip state and
as discussed earlier, d1 remains this value during the subsequent pure stick state. In our
simulation, the values of d1; _d1; d2 and _d2 at the end of a certain state provide the initial conditions
for the next state. Finally, the solutions for all states are assembled.

5.6. Effect of conditioning factor s

In the smoothened friction model of Eq. (14), the singularity at _d ¼ 0 of the classical Coulomb
model is eliminated. However, this smoothening process brings an artificial uncertainty to the
system since it is virtually impossible to determine the precise value of s without a significant
knowledge of its dynamics. From the standpoint of the rate of change of the friction torque at
_d ¼ 0, the proposed procedure replaces the impulse function (with the discontinuous model) with
the following finite derivative:

dTf

d_d
¼ T sfs½1� tanh2ðs_dÞ�. (31)

The maximum amplitude, T sfs, can now be taken as an indicator of its abruptness. As seen from
Eq. (31), even for the same s value, the abruptness of Tf ð

_dÞ profile would vary from system to
system because of the saturation friction torque T sf . Moreover, s controls the integration speed.
For example, a lower s value gives a smoother torque curve and faster convergence is achieved in
numerical integration. Conversely, a higher s value can produce a Coulomb-like Tf ð

_dÞ curve. But
too abrupt transition(s) would ill-condition the differential equations [30], and thereby
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introducing numerical stiffness issues. Illustrative results are given in Figs. 6 and 7. When s is 100,
the calculated system response is almost identical to the one found with the discontinuous model.
When s is low such as 0.5, no pure stick regime is found in _d1ðtÞ of Fig. 6. The friction torque
undergoes a relatively smooth transition but the calculated response of d2ðtÞ shows some
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Fig. 6. Comparison of two friction path models in terms of time histories. ——, discontinuous friction model; - - - - - -,

smoothened model with s ¼ 0:5; – - – - –, smoothened model with s ¼ 102.

1.6 1.8 2
-20

0

20

40

60

t, s

1.6 1.8 2
-0.5

0

0.5

δ 2, r
ad

t, s

δ 1
, 

ra
d/

s 

. 

Fig. 7. Comparison of two friction path models in terms of time histories. ——, discontinuous model; - - - - - -,
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differences. On the other hand, when s is 1000, the time domain responses of Fig. 7 are incorrect.
Therefore, the dynamic response is very sensitive to the judicious choice of s. Meanwhile, some
almost periodic solutions may appear. These could be very misleading because the periodic
solution is being sought, and a relative higher value of s provides results that resemble the ones
given by the discontinuous models. A comparison between the computational times clearly shows
the advantage of a smoothened model. For instance, the calculations for _d1ðtÞ, etc. at one
particular excitation frequency takes 15 s with the smoothened friction model with s ¼ 100 on a
Pentium 4 1.7GHz processor, while the discontinuous friction model consumes 50 s. However, as
discussed earlier, the best value of s usually is not known a priori and it could depend on system
parameters. Consequently, the discontinuous friction model should be used as benchmark if
successfully implemented. Further, our solution algorithm for discontinuous friction model could
also be extended to other piecewise linear systems like the clearance nonlinearity. However, test or
decision functions would need to be modified.
6. Effect of friction controlled path parameters

6.1. Bi-linear friction system analysis

Many researchers [2,3,5,6,8,11] have studied the conventional bi-linear friction system that
assumes a massless link between the spring and the dry friction elements as shown in Fig. 8.
Similar to the physical system of Fig. 3, equations for Fig. 8 can be given on a state by state basis.
First, for the positive slip state, the equation is

I1I3

I1 þ I3
€d1 þ C _d1 þ T sf ¼

I3

I1 þ I3
Te þ

I1

I1 þ I3
TD. (32)

Since no inertial body exists between the dry friction and spring elements, the torque acting on the
torsional spring is constant ðT sf Þ. Consequently, the value of d2 remains T sf=K and _d2 is zero. Second,
for the case of negative slip, the equation is rewritten as follows where d2 ¼ �T sf=K and _d2 ¼ 0

I1I3

I1 þ I3
€d1 þ C _d1 � T sf ¼

I3

I1 þ I3
Te þ

I1

I1 þ I3
TD. (33)
θ1  θ3 

KTf 

θ2 

I1 
I3 

Te 

C TD 

Fig. 8. Schematic of the bi-linear torsional system (with I2 ! 0). Here, Tf represents a dry friction path.
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Third, the equation for the pure stick state is given by

I1I3

I1 þ I3
€d2 þ C _d2 þ Kd2 ¼ Tm þ

I3

I1 þ I3
TpðtÞ. (34)

As depicted in Figs. 4a and b, d1 remains constant and _d1 is equal to zero. The integration
procedure used here with the discontinuous friction model can now be applied to this system with
a redefinition of the test GðtÞ or decision ReðtÞ function:

GðtÞ ¼ ReðtÞ ¼ Kd2. (35)

The systems of Figs. 3 and 8 can now be compared. Both show the second-order system behavior
under the pure stick condition. However, under the positive or negative slip state condition, the
bi-linear friction system (of Fig. 8) exhibits a first-order system behavior while the model of Fig. 3
follows a second-order system. For this reason, some key differences between these two systems
are expected, as explored in the subsequent section.

6.2. Effect of the secondary inertia I2

A comparison of Eqs. (8) and (34) shows that the effect of the secondary ðI2Þ inertia could be
negligible under the pure stick condition in the presence of a very small I2. For this reason, we
examine the effect of I2 in the positive or negative slip state. First, consider a conventional bi-
linear friction system undergoes transition from pure stick to positive slip state. Eq. (32) describes
the governing equation for the system in the pure positive slipping motion. A phase term jc is
intentionally included in the excitation torque expression since the absolute transition time tc may
not be integer multiplier of the excitation period ðPÞ. Consequently, given TD ¼ Tm, Eq. (32) has
to be rewritten as follows where I1e ¼ I1I3=ðI1 þ I3Þ and Tpe ¼ TpI3=ðI1 þ I3Þ.

I1e
€d1 þ C _d1 ¼ ðTm � T sf Þ þ Tpe sinðotþ jcÞ, (36)

P ¼
2p
o
; jc ¼ tc � int

tc

P

� �h i
o. (37a,b)

The operator intð�Þ yields the integer portion of a fraction number. Now, the general solution of
_d1ðtÞ is a combination of homogeneous and particular solutions as follows:

_d1ðtÞ ¼ Ae�ðC=I1eÞt þ ½a0 þ a1 cosðotÞ þ a2 sinðotÞ�. (38)

The coefficients (a0; a1 and a2) are obtained by matching the particular solutions on both sides of
Eq. (36) as follows:

a0 ¼
Tm � T sf

C
; a1 ¼ Tpe

C sin jc � I1eo cosjc

I21eo2 þ C2
; a2 ¼ Tpe

C cosjc þ I1eo sinjc

I21eo2 þ C2
. (39a2c)

The constant A needs to be determined by the initial condition. As noted from the previous
section, when the frictional interface experiences a transition from pure stick to positive slip
motion, d2 reaches the maximum amplitude T sf=K and retains this value during the entire
subsequent pure slip state. To satisfy this dynamic condition, _d2 experiences a finite jump from a
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certain value V at the end of pure stick state to 0 at the start of pure slip state. For this reason, a
corresponding finite jump from 0 to V must occur in _d1 to satisfy the following continuity
condition when we reset the transition time as 0.

ð_y1 � _y3Þjt¼t0� ¼ ð
_y1 � _y3Þjt¼t0þ . (40)

Thus, the initial condition of _d1ðtÞ is determined, _d1ð0Þ ¼ V . Use this to find A of Eq. (38) and
write the complete response of _d1ðtÞ as follows:

_d1ðtÞ ¼ ðV � a0 � a1Þe
�ðC=I1eÞt þ a0 þ a1 cosðotÞ þ a2 sinðotÞ. (41)

Observe that the oscillatory terms associated with a1 and a2 only contain only one frequency ðoÞ.
Next, the 3dof system ðI2a0Þ is considered. Assume a very small I2, say I2=I1 ¼ 0:00520:01.

Eqs. (18) and (19) are approximated as follows:

I2 €d1 þ C
I2

I1
ð_d1 þ _d2Þ � Kd2 þ T sf ¼ 0, (42)

I2 €d2 þ C
I2

I3
ð_d1 þ _d2Þ þ Kd2 � T sf ¼ 0. (43)

Since the excitation torque is neglected due to I1bI2, the phase lag jc term that accurately
represent the excitation as discussed in the previous section is no longer an issue here. Further,
Eq. (43) is further simplified given I3bI2; refer to Table 1 for typical parameters.

I2 €d2 þ C
I2

I3
_d2 þ Kd2 � T sf ¼ 0. (44)

Eq. (44) can be conveniently solved and the approximated solution for d2 is obtained where
on ffi

ffiffiffiffiffiffiffiffiffiffiffi
K=I2

p
.

d2ðtÞ ¼ b0 þ b1e
�ðC=2I3Þt cosðontÞ þ b2e

�ðC=2I3Þt sinðontÞ. (45)

The initial conditions for d2ðtÞ at the transition time are d2ð0Þ ¼ T sf=K and _d2ð0Þ ¼ V . Since I2 has
a very small but non-zero value, its absolute velocity or momentum can only be changed by an
infinite large impulsive force within an infinitesimal time span that is physically impossible.
Consequently, no jump could take place in _d2ðtÞ unlike the one exhibited by bi-linear friction
system. Instead, _d2ðtÞ is a smooth function of time.

_d2ðtÞ ¼
T sf

K
þ

V

on

e�ðC=2I3Þt sinðontÞ. (46)

As noted, d2ðtÞ oscillates around the mean value T sf=K unlike the bi-linear friction system.
Further, since I2 is very small, the oscillation frequency ðonÞ is very high. To conveniently obtain
an approximate analytical solution for _d1ðtÞ, we neglect the damping term in Eq. (44) and
substitute the relation in Eq. (42), and obtain the following governing equation:

I2ð€d1 þ €d2Þ þ C
I2

I1
ð_d1 þ _d2Þ ¼ 0, (47)

where the initial condition is defined as ð_d1 þ _d2Þjt¼0 ¼ _d2jt¼0 ¼ V . Finally, the approximate
analytical solution of _d1ðtÞ is obtained.
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_d1ðtÞ ¼ V ½e�ðC=I1Þt � e�ðC=2I3Þt cosðontÞ�. (48)

Similar to d2ðtÞ, a very high-frequency oscillatory term is found in _d1ðtÞ along with an
exponentially decaying term. Further, it is noted that the above analyses could be applied to the
negative slip state in a similar manner.
Figs. 9 and 10 compare the results corresponding to I2=I1a0 (system of Fig. 3) and 0 (the

conventional bi-linear system of Fig. 8) cases. As expected, the motion differences under the pure
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Fig. 9. Effect of I2 on time histories: (a) numerical solutions: ——, I2=I1 ¼ 0; - - - - - -, I2=I1 ¼ 0:005; (b) comparison

between numerical and analytical solution during the positive slip state: ——, numerical solution given I2=I1 ¼ 0;

. . . . ., analytical solution given I2=I1 ¼ 0; - - - - -, numerical solution given I2=I1 ¼ 0:005; – - – - – - –, analytical

solution given I2=I1 ¼ 0:005.



ARTICLE IN PRESS

2.3 2.4 2.5
-50

0

60

2.3 2.4 2.5
-0.4

0

0.4

δ 2, r
ad

δ 1, 
ra

d/
s

. 

t, s

t, s

2.3 2.32 2.34 2.36
-40

-20

0

20

40

60

2.3 2.32 2.34 2.36
0.25

0.3

0.35

0.4

0.45

t, s

t, s

δ 2, 
ra

d
δ 1. 

ra
d/

s

. 

(a)

(b)

Fig. 10. Effect of I2 on time histories: (a) numerical solutions: ——, I2=I1 ¼ 0; - - - - - -, I2=I1 ¼ 0:01; (b) comparison

between numerical and analytical solution during the positive slip state: ——, numerical solution given I2=I1 ¼ 0;
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stick condition ð_d1 ¼ 0Þ are minimal since I2 is very small compared to I1 as shown in Figs. 9a and
10a. Under the slip condition ð_d140Þ, the difference is however noticeable. As response makes a
transition from stick to slip, _d1 of the bi-linear system (with I2 ¼ 0) shows a finite jump from zero
to the value of _d2 at the end of previous stick state and then it goes back to zero (stick) gradually.
The values of d2 are bounded within �T sf=K . Overall, the response resembles the ‘‘relaxation
oscillation’’ [31], i.e. the potential energy is incrementally stored in the spring during the pure stick
state and then suddenly released during the stick-to-slip transition. However, our response does
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not quite follow the classical ‘‘relaxation oscillation’’ behavior since the underlying mechanism is
essentially different. According to Den Hartog [32] and Andronov et al. [33], the ‘‘relaxation
oscillation’’ is self-excited due to the existence of negative damping, such as the dry friction
element with a negative slope in an autonomous system. In contrast, the response displayed by
our bi-linear friction system is a result of the external torque excitation in the presence of a friction
term and as such no negative damping element is present. In fact, Minorsky [34] has suggested
that generic quasi-discontinuous motions may describe two kinds of oscillations: (i) relaxation
oscillations and (ii) impulse-excited oscillations that are induced by an external impulsive cause.
Although our response cannot be classified as impulse-excited oscillations either, we would still
categorize as a quasi-discontinuous oscillations. Further research is needed to explore this issue.
On the contrary, the system response with a non-zero I2 is, however, quite different. With the

existence of a secondary inertia, an abrupt change or finite jump in _d1 at the transition point does
not occur. But the slip velocity is much higher than the one in the bi-linear friction case. With the
initial conditions and absolute transition time provided by numerical solution, approximate
analytical solutions for _d1 and d2 are also obtained by using Eqs. (41), (46), and (48), respectively.
Comparative results in Figs. 9b and 10b show a good agreement between the approximate
analytical solutions and exact numerical solutions. Some minor difference for the I2a0 case could
be due to inadequate damping in the approximate model. The reason that _d1ðtÞ just decreases
gradually with time without active oscillations with bi-linear friction system is that the oscillatory
term in Eq. (41) is at excitation frequency o and this frequency is very low compared to on ¼ffiffiffiffiffiffiffiffiffiffiffi

K=I2
p

since a very small value of I2 is used. Also, only period-one motions are observed.
Further, the response is investigated using phase-plane plots. As evident from Figs. 11a and c,

the friction interface in the bi-linear hysteresis case always experiences two stops per cycle and the
12 14 16 18

-20

0

20

δ
1
, rad

-0.4 -0.2 0 0.2 0.4
-40

0

40

δ
2
, rad

12 14 16 18

-40

0

40

δ
1
, rad

-0.4 -0.2 0 0.2 0.4
-40

0

40

δ
2
, rad

 

δ 1, 
ra

d/
s 

. 

. δ 2, 
ra

d/
s 

. δ 2, 
ra

d/
s 

. δ 1, 
ra

d/
s 

(a)

(c) (d)

(b)

Fig. 11. Effect of I2 on phase-plane plots: (a) and (c) are with I2=I1 ¼ 0; (b) and (d) are with I2=I1 ¼ 0:01.
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corresponding d2ðtÞ shows a noticeable boundary at �T sf=K . Compare the results of Fig. 11a and
c ðI2 ¼ 0Þ with Figs. 11b and d ðI2a0Þ. More than 2 stops are experienced and d2ðtÞ shows an
oscillatory motion around �T sf=K . The cusps formed in Figs. 11b and d are due to the stick–slip
transitions.
More time histories plots are presented in Fig. 12. It is seen that an increase in I2 decreases the

severity of the interfacial stick–slip. At the excitation frequency of 7Hz, the negative slip
disappears when I2 ¼ 0:4I1. As stated previously in the stick-to-slip boundary analysis, there
exists a specific value of I2 that would induce a purely stick regime and thus d2ðtÞ is governed
strictly by a linear system.
A more comprehensive understanding on the effect of I2 could be achieved by constructing the

nonlinear frequency response characteristics. Dynamic responses may be quantified by taking the
maximum (max) and minimum (min) values from the calculated time history at each excitation
frequency. Fig. 13a shows the response maps in terms of d2max and d2min values. Stick–slip
boundaries as found earlier by the linear system theory are also plotted. Since there is no spring in
parallel with the dry friction element, the relative displacement d1ðtÞ may grow up to a very large
value under the influence of a mean load Tm. Thus, no physical meaning could be associated with
max or min values of the steady-state d1ðtÞ. Instead, the nonlinear frequency response of relative
displacement d2 is of chief interest here. Also, we find the root-mean-square (rms) values from the
calculated time histories, again at each excitation frequency as shown in Fig. 13b.
As expected from the stick-to-slip boundary analysis, an increase in the value of I2 narrows the

stick–slip regime. It is also clearly observed in Fig. 13a that as I2 increases, the max-to-min value
of d2 over the pure stick (linear) regime is lowered. However, the values over the stick–slip regime
go up. Unlike the bi-linear hysteresis case where the peak amplitude is constant ðd2 ¼ T sf=KÞ, the
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Fig. 13. Effect of I2 on responses over a range of excitation frequencies: (a) maximum and minimum responses: �,

I2=I1 ¼ 0; - - - - - -, I2=I1 ¼ 0:01; �; I2=I1 ¼ 0:1; – - – - –, I2=I1 ¼ 0:2; ——, I2=I1 ¼ 0:4; (b) rms responses: �,

I2=I1 ¼ 0; - - - - - -, I2=I1 ¼ 0:01; �; I2=I1 ¼ 0:1; – - – - –, I2=I1 ¼ 0:2; ——, I2=I1 ¼ 0:4.
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amplitudes with non-zero I2 exhibit ‘‘resonance-like’’ curves in Fig. 13. Such resonances are
dictated by a combination of 2 states: 2dof and 3dof system responses. A comparison of the rms
maps in Fig. 13b shows similar effects of I2.
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6.3. Effect on the saturation friction torque T sf

Fig. 14 shows the effect of T sf on nonlinear frequency responses. As T sf increases, the stick–slip
regime narrows but the peak amplitude increases. Such a narrowing trend of the stick–slip regime
is consistent with the stick-to-slip boundary analysis. Higher amplitudes of d2 can be explained by
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Fig. 14. Effect of T sf on responses over a range of excitation frequencies: (a) maximum and minimum responses: },

Tf ¼ 250Nm; - - - - - -, Tf ¼ 350Nm; �;Tf ¼ 450Nm; ——, Tf ¼ 550Nm; (b) rms responses: }, Tf ¼ 250Nm;

- - - - - -, Tf ¼ 350Nm; �;Tf ¼ 450Nm; ——, Tf ¼ 550Nm.
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the fact that the sub-system of I2 and I3 now receives more excitation which is equal to T sf under
the slip condition. The severity of the stick–slip transition also decreases as evident from the time
histories of Figs. 15a (at 10Hz) and b (at 8Hz). Fig. 15a shows that when T sf is small such as
250Nm, 2 slips are found in each cycle. But when T sf increases to 450Nm, the number of slips
per cycle reduces to one. One could predict the trend of stick–slip regime as follows: T sf first
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Fig. 15. Effect of T sf on time histories: (a) excitation frequency is 10Hz: - - - - - -, Tf ¼ 250Nm; .............,

Tf ¼ 350Nm; – - – - –, Tf ¼ 450Nm; ——, Tf ¼ 550Nm; (b) excitation frequency is 8Hz: - - - - - -, Tf ¼ 250Nm;

............., Tf ¼ 350Nm; – - – - –, Tf ¼ 450Nm; ——, Tf ¼ 550Nm.
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reduces the slip velocity and its duration. Then the number of slips is reduced as T sf is increased.
Ultimately, this reduction would introduce the pure stick condition, i.e. non-slip or zero slip
velocity.
7. Comparisons with benchmark studies

Next, we compare our method with two benchmark examples as available in the literature.
These include Ferri and Heck’s turbine blade damper study [15] and Hartung et al.’s passive
vibration absorber analyses [26]. Physical models of both studies could be conceptually described
by the sub-sets of Fig. 3 since the dry friction is the only nonlinear element in 2dof systems.
The model of Ferri and Heck’s turbine blade damper is presented in Fig. 16a. The governing

equations with dimensionless parameters (using the nomenclature of [15]) are as follows where y1
and y2 are the absolute displacements; gð_y1Þ is the classical Coulomb friction force.

r€y1 þ pðy1 � y2Þ þ gð_y1Þ ¼ 0, (49)

€y2 þ 2B_y2 þ y2 þ pðy2 � y1Þ ¼ f cosðotÞ. (50)

Two example cases are selected to demonstrate the significant dynamic effect of the secondary
mass ðrÞ. Our methods are applied to this system to first calculate the stick-to-slip boundaries, and
then we conduct nonlinear simulations. Using both discontinuous and smoothened friction torque
models of earlier sections, we predict frequency responses that match quite well with Ferri and
Heck’s results in Figs. 17 and 18. A minor difference is seen around o ¼ 0:94 in Fig. 17a when s is
k =1
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µN=1
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m=1

p

f cos(ωt)
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Fig. 16. Benchmark models with dry friction element: (a) Ferri and Heck’s turbine blade friction damper model [15]

and (b) Harung et al.’s passive vibration absorber model [26].
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changed from 50 to 10. However, as shown by the time history in Fig. 17b, this difference is within
5%. Further, our results generate more insight into the system by analytically pinpointing the
pure stick (linear) and stick–slip (nonlinear) frequency regimes.
Hartung et al. [26] studied the dynamics of a 2dof system (vibration absorber) as shown in

Fig. 16b. The governing equations are as follows using their nomenclature.
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m_x1 þ c_x1 � c_x2 þ ð1þ kÞx1 � x2 ¼ k cosðotÞ, (51)

_x2 � c_x1 þ c_x2 � x1 þ x2 ¼ �rsgð
_x2Þ. (52)

Aside from numerical simulation based on the discontinuous friction model, they also conducted an
experimental study and investigated the effect of friction force amplitude rs. Selected measured
frequency response curves under three friction forces are extracted from Ref. [26] and illustrated in
Fig. 19. First, we predict the stick-to-slip boundaries using the linear system procedure proposed
earlier. Second, we employ the discontinuous and smoothened friction models. Our simulation
results, as shown in Fig. 20, show a very good match with measured curve of Fig. 19 even when the
smoothened friction model is chosen. As the friction force increases, the stick–slip motion is
suppressed in Fig. 20. The stick–slip motion virtually disappears in Fig. 20c when the friction force
increases to a certain value and finally the system is degenerated into a linear sdof system. Although,
Hartung et al.’s experiment [26] showed that the friction-induced characteristics depend on normal
or friction force amplitude, our comparisons reveal that the even simplest friction model could still
be used to qualitatively assess the nonlinear responses or quantitatively estimate the stick–slip
boundaries. Thus, we validate our linear and nonlinear methods.
8. Conclusion

Unlike previous studies that focused on the frictional interface models, we have examined the
nonlinear time and frequency domain responses of a 3dof system subjected to localized stick–slip
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Fig. 19. Measured frequency response curves (Hartung et al.’s experiment scanned from Ref. [26]).
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motions. Three contributions emerge. First, a procedure to calculate the stick-to-slip boundaries
has been developed based on the linear system theory. This procedure yields reliable prediction of
the thresholds and thus it can quickly identify linear or nonlinear frequency regimes. Second, both
smoothened and discontinuous friction models are studied and compared with each other. A
direct time domain numerical integration can be employed to solve the smoothened friction model
and it speeds up the calculation. Though a judicious choice of the conditioning factor can generate
reasonably close solutions, one must exercise caution in using the smoothening procedure without
some prior knowledge of the system. Third, the effect of the secondary inertia is investigated in
depth using both time and frequency domain calculations. Both approximate analytical and
numerical solutions clearly illustrate that even a very small secondary inertia has a significant
influence on the behavior and thus the bi-linear friction system (such as Fig. 8) must be used with
caution. During the slip states, _d1ðtÞ follows a first-order behavior when I2 ¼ 0 and a second-order
system when I2a0. As evident from time histories and frequency responses, the amplitudes of
d2ðtÞ are bounded for a bi-linear system and its frequency responses form a flat top. But when
I2a0, no specific bounds can be defined for d2ðtÞ and its frequency responses show resonance-like
curves. These resonances are essentially determined by a combination of 2 states: 2dof and 3dof
nonlinear system responses.
The frictional interface dynamics and the response of the overall system is dictated by the

secondary inertia I2. At a higher value of I2, the stick–slip phenomena are suppressed. However,
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the peak amplitudes of the response could still go up. Similar effect is observed by a change in the
saturation friction torque. Although, the system response is strongly nonlinear, the suppression of
stick–slip phenomena seems to the follow the following pattern: first reduce the slip velocity and
then reduce the number of slips.
The advantage of our smoothened and discontinuous friction models is limited to a system of

low dimension. As the system dimension increases, time domain simulations could become
very cumbersome since many nonlinear functions must be evaluated. Conceptually, semi-
analytical techniques need to be developed. Effects along this direction are reported in a
subsequent article [35].
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